Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
BMC Vet Res ; 20(1): 177, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38711036

RESUMO

BACKGROUND: Rubber seed kernel is a by-product derived from rubber tree plantations. It is rich in C18 unsaturated fatty acids (UFA) and has the potential to be used as a protein source for ruminant diets. This investigation has been conducted to determine the influence of rubber seed kernel pellet (RUSKEP) supplementation on in vitro rumen fermentation characteristics and fatty acid profiles in swamp buffalo. Using a completely randomized design (CRD) and supplementation of RUSKEP at 0, 2, 4, 6, 8, and 10% dry matter (DM) of substrate. RESULTS: The supplementation with RUSKEP had no effect on gas kinetics, cumulative gas production, or degradability. Ruminal pH decreased linearly (P < 0.01) and ammonia-nitrogen (NH3-N) concentration decreased quadratically (P < 0.01) by RUSKEP supplementation. The proportion of acetate (C2) decreased linearly (P < 0.01), but propionate (C3) and butyrate (C4) increased linearly (P < 0.01), resulting in a decrease in the acetate to propionate ratio (C2:C3) (P < 0.01) by RUSKEP supplementation. With an increasing level of dietary RUSKEP, there was a slight increase in UFA in the rumen by increasing the oleic acid (OA; C18:1 cis-9 + trans-9), linoleic acid (LA; C18:2 cis-9,12 + trans-9,12), and α-linolenic acid (ALA; C18:3 cis-9,12,15) concentrations (P < 0.01). CONCLUSIONS: Adding up to 10% of RUSKEP could improve in vitro rumen fermentation and C18 unsaturated fatty acids, especially ALA, in swamp buffalo.


Assuntos
Ração Animal , Búfalos , Ácidos Graxos , Fermentação , Rúmen , Sementes , Animais , Rúmen/metabolismo , Ácidos Graxos/análise , Ácidos Graxos/metabolismo , Ração Animal/análise , Sementes/química , Suplementos Nutricionais , Dieta/veterinária , Hevea/química
2.
Heliyon ; 10(8): e29973, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38699739

RESUMO

This study focused on examining the gas dynamics, rumen fermentation, and digestibility of ensiled cassava pulp (CSVP) using Lactobacillus casei TH14, urea, and molasses in the context of a laboratory experiment. All data in this study were analyzed using treatments arranged in 2 × 2 × 2 factorial arrangements using a completely randomized design. The L.casei TH14 additive (L) was factor A. Factor B was the molasses additive (M), while factor C was urea (U). There was no interaction effect of L, U, and M on gas production, volatile fatty acid (VFA) content, pH value, or ammonia-nitrogen level (P<0.05). The interaction of L, U, and M influenced in vitro dry matter digestibility (IVDMD) at 12 h (P < 0.05), and the CSVP fermented with the additions of L, U, and M together (LUM) was higher than the additions of CON, M, U, UM, and L on IVDMD (P < 0.05). However, the IVDMD values of adding LUM were higher in the control group (CON), M, U, UM, and L additive groups (P < 0.05). There was an interaction effect of L, U, and M on the protozoal count at 8 h (P<0.05), which had a lower protozoal count in the control group. In addition, acetic acid and butyric acid concentrations at 4 h and 8 h (P<0.05) were increased during the fermentation of CSVP using L and M combinations. Furthermore, the combination of U and M enhanced (P<0.05) average acetic acid, propionic acid, and pH at 4 h and 8 h while reducing (P<0.05) the gas generation from the insoluble portion (b). It was suggested that utilizing L. casei TH14 together with urea and molasses can enhance nutrient contents and improve the in vitro dry matter digestibility of CSVP, although it has no effect on ruminal fermentation or gas production.

3.
Heliyon ; 10(9): e29972, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38694056

RESUMO

The objective of this experiment was to study the effects of Brazilian spinach (Alternanthera sissoo) pellet (BSP) supplementation on rumen fermentation, protozoal population, and methane (CH4) estimation in beef cattle. Four male Thai native beef cattle, 3 years old, with an average bodyweight of 180 ± 5 kg, were randomly arranged in a 4 × 4 Latin square design. The cattle were supplemented (on-top) with four levels of BSP (2, 4, 6, and 8% dry matter intake (DMI), respectively). The roughage component, derived from rice straw, was fed at 40 % of DMI, while the concentrate diet was fed at 60 % of DMI. The result of the experiment demonstrated that BSP supplementation had no effect on the DMI, nutrient intake, or nutrient digestibility (p > 0.05). Rumen pH and ammonia-nitrogen concentration were not significant, while the average protozoal population linearly decreased (p = 0.002) with BSP supplementation. Mean blood urea-nitrogen concentration was linearly increased (p = 0.004) when increasing the level of BSP. Brazilian spinach pellet had no significant effect on total volatile fatty acids (TVFA), VFA profiles, and CH4 estimation (p > 0.05). Nitrogen balance was no different from the supplementation of BSP. The study indicates that Brazilian spinach pellet supplementation showed no noticeable effects on feed intake, rumen parameters, and nitrogen utilization; however, at 6-8% of DMI, there was a decrease in protozoal population, with no corresponding reduction in CH4 estimation.

4.
Animals (Basel) ; 14(3)2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38337998

RESUMO

The objective of this study is to evaluate the effects of replacing corn meal in ruminant diets with winged bean (Psophocarpus tetragonolobus) tubers (WBT) on ruminal fermentation, gas production parameters, and in vitro degradability. The study employed a completely random design (CRD) in its execution. The experimental design employed was a completely randomized design (CRD), featuring eleven levels of corn meal substitution with winged bean tubers pellet (WBTP) at 0%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, and 100%. The levels were grouped into four categories of replacement: control (0% in the diet), low levels (10%, 20%, and 30% in the diet), medium levels (40%, 50%, 60%, and 70% in the diet), and high levels (80%, 90%, and 100% in the diet). The experimental results indicated that substituting corn meal with WBTP at moderate and high levels in the diet could improve the performance of the fermentation process by increasing the gas production rate constant from the insoluble fraction (p < 0.01). The IVDMD exhibited a higher degree of in vitro degradation after 12 h (h), with the mean value being higher in the high group compared to the medium until the high group (p < 0.05). At the 4 h mark, the groups that substituted corn meal with WBTP exhibited a decrease in pH value (p < 0.05) in comparison to the control group. The substitution of corn meal with WBTP resulted in the lowest protozoal count after 8 h in the median group (p < 0.05). A significant difference in the effect of WBTP on total volatile fatty acid (TVFA) concentration was observed at 8 h after incubation (p < 0.05). The medium and high levels of WBTP replacement resulted in the lowest TVFA concentration at 8 h (p < 0.05). The mean proportion of acetic acid (C2) linearly declined and was lowest when a high level of WBTP replaced cornmeal (p < 0.05). The concentration of propionic acid (C3) at 8 h after incubation and average values were linearly significantly different when various levels of WBTP were utilized. Replacing corn meal with WBTP at a high level showed the highest concentration of C3. Moreover, substituting medium and high concentrations of WBTP for corn meal resulted in a significant reduction in both the C2:C3 ratio at 8 h and the mean value (p < 0.05). In conclusion, WBTP exhibits a nutritional composition that is advantageous and may be an energetic substitute for corn meal.

5.
Animals (Basel) ; 13(24)2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38136898

RESUMO

The objective of this research was to investigate the effects of citric waste fermented with yeast waste pellet (CWYWP) supplementation on feed intake, rumen characteristics, and blood metabolites in native Thai beef cattle that are fed a rice-straw-based diet. Four native male Thai beef cattle (1.0-1.5 years old) with an initial body weight (BW) of 116 ± 16 kg were held in a 4 × 4 Latin square design within 21-day periods. The animals were assigned to receive CWYWP supplementation at 0%, 2%, 4%, and 6% of the total dry matter (DM) intake per day. The results indicate that feeding beef cattle with CWYWP leads to a linear increase in the total intake as well was the intake of crude protein (CP) and the digestibility of CP, with the maximum levels observed at 6% CWYWP supplementation (p < 0.05). Rumen characteristics, including pH, blood urea-nitrogen concentration, and protozoal population, showed no significant alterations in response to the varying CWYWP dosages (p > 0.05). In addition, the CWYWP supplementation resulted in no significant changes in the concentration of ammonia-nitrogen, remaining within an average normal range of 10.19-10.38 mg/dL (p > 0.05). The inclusion of 6% CWYWP resulted in the highest population of ruminal bacteria (p < 0.05). Additionally, the CWYWP supplementation led to a statistically significant increase in the mean propionic acid concentration as compared to the group that did not receive the CWYWP supplementation (p < 0.05). In conclusion, this experiment demonstrates that supplementing Thai native beef cattle with CWYWP at either 4% or 6% DM per day can enhance their total CP intake as well as the CP digestibility and rumen bacterial population, and can increase propionate concentration.

6.
Sci Rep ; 13(1): 18689, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37907583

RESUMO

This study aimed to compare the effects of adding cyanide-utilizing bacteria (CUB) and sulfur on rumen fermentation, the degradation efficiency of hydrogen cyanide (HCN), feed utilization, and blood metabolites in beef cattle fed two levels of fresh cassava root (CR). A 2 × 2 factorial arrangement in a 4 × 4 Latin square design was used to distribute four male purebred Thai native beef cattle (2.5-3.0 years old) with an initial body weight (BW) of 235 ± 15.0 kg. Factor A was Enterococcus faecium KKU-BF7 oral direct fed at 108 CFU/ml and 3% dry matter (DM) basis of pure sulfur in concentrate diet. Factor B was the two levels of CR containing HCN at 300 and 600 mg/kg on DM basis. There was no interaction effect between CUB and sulfur supplementation with CR on feed utilization (p > 0.05). Similarly, CUB and sulfur supplementation did not affect (p > 0.05) DM intake and apparent nutrient digestibility. However, the high level of CR supplementation increased (p < 0.05) feed intake and neutral detergent fiber digestibility. The ruminal pH, microbial population, ammonia-nitrogen, blood urea nitrogen, and blood thiocyanate concentrations were unaffected by the addition of CUB and sulfur at two CR concentrations (p > 0.05). The addition of CUB or sulfur had no effect on the efficiency of HCN degradation in the rumen (p > 0.05). However, cattle given CR with HCN at 600 mg/kg DM had considerably higher degradation efficiency than those fed CR containing HCN at 300 mg/kg DM (p < 0.05). The group fed CUB had a considerably greater CUB population (p < 0.05) than the sulfur group. Cyanide-utilizing bacteria or sulfur supplementation with CR had no interaction effect between total VFAs and their profiles (p > 0.05). However, the study observed a significant positive correlation between the amount of CR and the concentration of propionate in the rumen (p < 0.05). The levels of nitrogen absorption and nitrogen retention did not differ significantly among the treatments (p > 0.05). Hence, it may be inferred that the administration of a high concentration of CR at a dosage of 600 mg/kg DM HCN could potentially provide advantageous outcomes when animals are subjected to oral CUB incorporation.


Assuntos
Manihot , Microbiota , Bovinos , Masculino , Animais , Manihot/metabolismo , Cianetos/metabolismo , Digestão , Suplementos Nutricionais/análise , Dieta/veterinária , Fermentação , Nitrogênio/metabolismo , Bactérias/metabolismo , Enxofre/metabolismo , Rúmen/microbiologia , Ração Animal/análise
7.
Sci Rep ; 13(1): 13176, 2023 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-37580363

RESUMO

Cyanogenic glycosides in forage species and the possibility of cyanide (CN) poisoning can have undesirable effects on ruminants. The literature estimates that unknown rumen bacteria with rhodanese activity are key factors in the animal detoxification of cyanogenic glycosides, as they are capable of transforming CN into the less toxic thiocyanate. Therefore, identifying these bacteria will enhance our understanding of how to improve animal health with this natural CN detoxification process. In this study, a rhodanese activity screening assay revealed 6 of 44 candidate rumen bacterial strains isolated from domestic buffalo, dairy cattle, and beef cattle, each with a different colony morphology. These strains were identified as belonging to the species Enterococcus faecium and E. gallinarum by 16S ribosomal DNA sequence analysis. A CN-thiocyanate transformation assay showed that the thiocyanate formation capacity of the strains after a 12 h incubation ranged from 4.42 to 25.49 mg hydrogen CN equivalent/L. In addition, thiocyanate degradation resulted in the production of ammonia nitrogen and acetic acid in different strains. This study showed that certain strains of enterococci substantially contribute to CN metabolism in ruminants. Our results may serve as a starting point for research aimed at improving ruminant production systems in relation to CN metabolism.


Assuntos
Cianetos , Tiossulfato Sulfurtransferase , Animais , Bovinos , Cianetos/metabolismo , Tiossulfato Sulfurtransferase/metabolismo , Tiocianatos/metabolismo , Enterococcus/metabolismo , Rúmen/microbiologia , Ruminantes/metabolismo
8.
Animals (Basel) ; 13(15)2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37570225

RESUMO

Currently, the scarcity of high-quality, expensive animal feed is a primary factor driving up the cost of animal husbandry. As a result, most researchers have focused on improving the potential of using alternative feed resources derived from the black soldier fly larva. In particular, the utilization of oil from black fly larvae is a byproduct of the industry. The aim of this study was to investigate the influence of black soldier fly larva oils and the proportion of roughage-to-concentrate ratios on gas kinetics, rumen characteristics, degradability, and mitigate CH4 production by using in vitro gas production techniques. The in vitro investigation used a completely randomized design (CRD) with a 2 × 4 factorial arrangement. The level of R:C ratios (60:40 and 40:60) were factor A, while BSFO levels (0, 2, 4, and 6% of DM) were factor B. Under this investigation, the combined impact of R:C ratio and BSFO on the kinetics of gas and accumulative gas production was found to be significant (p < 0.01). After 4 h of incubation, the pH and ammonia-nitrogen (NH3-N) concentration were found to be impacted by the inclusion of BSFO levels at different R:C-ratios (p < 0.01). Moreover, after 4 and 8 h of incubation, supplementing the BSFO at 4% with the level of R:C ratio at 40:60 resulted in a significant reduction in the amount of CH4 in the rumen (p < 0.05). However, the inclusion of BSFO levels at different R:C ratios had no effect on the degradability of DM after 12 and 24 h of incubation (p > 0.05), whereas increasing the concentration of BSFO in concentrate at 6% reduced the DM degradability after 24 h of incubation (p < 0.05). Furthermore, adding BSFO to the diet at various R:C ratios enhanced the propionate (C3) concentration, with the highest level observed with the level of R:C ratio at 40:60 and 4% BSFO inclusion (p < 0.05). To summarize, the addition of BSFO at 4% with a 40:60 of R:C ratio increased C3 levels, decreased CH4 emission, and preserved DM degradability. A R:C ratio of 40:60 could improve the total volatile fatty acids and digestibility. Moreover, the inclusion of 6% BSFO at different R:C ratios lowered the in vitro dry matter digestibility, in vitro organic matter digestibility, NH3-N, and protozoal populations.

9.
Animals (Basel) ; 13(14)2023 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-37508022

RESUMO

The aim of this study was to investigate and compare the effects of different drying methods on the physical and chemical properties of black soldier fly larvae (BSFL) to determine their potential as an alternative protein source in animal feed. The experimental design was a 2 × 3 factorial arrangement in a completely randomized design (BSFL type × drying method), with five replications. The influence of post-harvest procedures was studied, including the different BSFL types (non-defatted and defatted) and drying methods (parabola dome, hot air oven, and microwave). The results showed that the types of BSFL, drying methods, and their interaction significantly (p < 0.001) influenced the feed's physical properties; these included the brightness of color (L* 29.74-54.07; a* 0.40-5.95; b* 9.04-25.57), medium bulk density (381.54-494.58 g/L), free flow with an angle of repose (41.30-45.40°), and small particle size. They significantly (p < 0.001) influenced the nutritive value of BSFL, which contained 42-59% crude protein, 7-14% crude fiber, 9-30% ether extract, and 5035-5861 kcal/kg of energy. Overall, both BSFL types and all the drying methods resulted in a slight variation in the proximate composition. However, a microwave and a hot-air oven were considered the most suitable methods for producing BSFL powder because of the high levels of nutrients retained and the improved physical parameters when compared to a parabola dome. This characterization of the physical and chemical composition of BSFL represents a preliminary methodology that could be used to initially preprocess larvae for use as an alternative protein source in animal feed and for other applications.

10.
Anim Biotechnol ; 34(9): 5113-5123, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37149787

RESUMO

The quantity and quality of animal feed are important factors for efficient and profitable animal farming. Feed ingredients and supplementation with high-density energy and nitrogen would be potentially useful on the farm. The new approach to feeding has shifted from animal-based diets to more readily fermentable feedstuffs in ruminants to meet the increased production of high-yielding animals. These methods encourage the use of fermented total mixed ration (FTMR). An advantage of feeding FTMR as opposed to total mixed ration (TMR) is the opportunity for a development alternative to efficiently handle ruminant diets. FTMR is a method to promote progressive nutrient utilization, extend the preservation of feed by preventing spoilage, and reduce anti-nutritive substances in feeds. Ruminal protein and starch degradability were increased due to proteolysis during storage by ruminants fed ensiled rations. The results found that FTMR can reduce the pH level and increase the lactic acid content of ensiled materials, which results in better quality feed and longer storage times. In addition, it can increase dry matter intake, growth rate, and milk production when compared with TMR. It was shown that the use of FTMR diet was effective for animal production. However, FTMR was rapidly spoiled when exposed to air or feed-out, particularly in hot and humid climates, resulting in a decrease in lactic acid concentration, an increase in pH, and the loss of nutrients. Thus, the appropriate method for enhancing the quality of FTMR should be considered.


Assuntos
Lactação , Leite , Feminino , Animais , Leite/química , Fermentação , Rúmen/metabolismo , Dieta/veterinária , Ração Animal/análise , Ruminantes , Ácido Láctico/análise , Ácido Láctico/metabolismo , Ácido Láctico/farmacologia
11.
Animals (Basel) ; 13(10)2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37238070

RESUMO

This research assessed the impact of cassava chips (CSC) and winged bean tubers (WBT) with various starch modification methods on the chemical composition, ruminal degradation, gas production, in vitro degradability, and ruminal fermentation of feed using an in situ and in vitro gas production technique. Experimental treatments were arranged for a 2 × 5 factorial, a completely randomized design with two sources of starch and five levels of modification treatments. Two sources of starch were CSC and WBT, while five modification treatments of starch were: no modification treatment, steam treatment, sodium hydroxide (NaOH) treatment, calcium hydroxide (CaOH2) treatment, and lactic acid (LA) treatment. The starch modification methods with NaOH and CaOH2 increased the ash content (p <0.05), whereas the crude protein (CP) content was lower after treatment with NaOH (p < 0.05). Steam reduced the soluble fraction (a) and effective dry matter degradability of WBT in situ (p <0.05). In addition, the WBT steaming methods result in a lower degradation rate constant in situ (p <0.05). The degradation rate constants for the insoluble fraction (c) in the untreated CSC were higher than those of the other groups. Starch modification with LA reduced in vitro dry matter degradability at 12 and 24 h of incubation (p <0.05). The starch modification method of the raw material showed the lowest pH value at 4 h (p <0.05). The source of starch and starch modification methods did not influence the in vitro ammonia nitrogen concentrations, or in vitro volatile fatty acids. In conclusion, compared to the CSC group and untreated treatment, treating WBT with steam might be a more effective strategy for enhancing feed efficiency by decreasing or retarding ruminal starch degradability and maintaining ruminal pH.

12.
J Anim Physiol Anim Nutr (Berl) ; 107(6): 1336-1346, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37129194

RESUMO

The aim of the previous research was to evaluate the effects of Brazilian spinach pellet (BSP) supplementation and dietary ratios on rumen characteristics, methane estimation, and milk production in dairy cows. Four crossbred Thai dairy cattle, with Holstein Friesian (HF) cows with a body weight of 442 ± 50 kg were assessed in a 2 × 2 factorial in a 4 × 4 Latin square design to obtain diets; factor A was the roughage (R) to concentrate (C) ratio at 40:60 and 30:70, and factor B was level of BSP supplantation at 2% and 6% of dry matter (basis) intake (DMI). R:C ratio and supplementation of BSP had no interaction effect on DMI and nutrient digestibility. On DM, organic matter (OM), crude protein (CP), and acid detergent fiber (ADF) intake, the R:C ratio increased (p < 0.05). The digestibility of OM improved (p < 0.05) when cows were fed a R:C ratio of 30:70. On pH, ammonia-nitrogen, protozoal population, and blood urea-nitrogen, there were no interactions between the R:C ratio and BSP supplementation. Increasing the BSP supplementation to 6% (p < 0.01) decreased the protozoal population. The R:C ratio of 30:70 increased total volatile fatty acid (VFA) and propionate (C3) concentrations while decreasing the acetate (C2) to C3 ratio and methane (CH4 ) estimation (p < 0.01). The average concentration of total VFA has increased by 114.46 mmol/L for 6% of BSP supplementation. Increased BSP supplementation increased the C3 concentration while decreasing the C2:C3 ratio and CH4 emissions (p < 0.05). The R:C ratio and BSP supplementation had no interaction effect on milk yield, 3.5% fat-corrected milk (FCM), or milk composition. The R:C ratio of 30:70 increased milk yield (p < 0.05) to the highest level of 12.18 kg/day. In conclusion, the diet containing a R:C ratio of 30:70 increased feed intake, milk yield, BUN, total VFA, and C3 concentration, and decreased the C2:C3 ratio and CH4 emission. BSP supplementation at 6% could increase TVFA and C3 concentrations while decreasing the protozoal population and CH4 estimation.


Assuntos
Leite , Spinacia oleracea , Feminino , Bovinos , Animais , Leite/química , Spinacia oleracea/metabolismo , Lactação , Rúmen/metabolismo , Brasil , Digestão , Silagem/análise , Dieta/veterinária , Ácidos Graxos Voláteis/metabolismo , Suplementos Nutricionais , Metano , Nitrogênio/metabolismo , Fermentação
13.
Heliyon ; 9(4): e14585, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37035355

RESUMO

The study's goal was to evaluate the impact of concentrate diets containing fermented cassava pulp with yeast waste (CSYW) with various roughage to concentrate ratios (R:C) on ruminal fermentation, nutritional digestibility, milk production, and milk composition in lactating cows. Four mid-lactation Thai crossbred dairy cows were randomly assigned a 2 × 2 factorial arrangement in a 4 × 4 Latin square design, weighing 440 ± 60.0 kg (75% Holstein Friesian and 25% Thai native breed), and having 90 days-in-milk (DIM). The different dietary treatments consisted of the following: factor A: soybean meal (SBM) and replacing SBM with CSYW at 100% dry matter (DM) in the concentrate diet, whereas factor B consisted of varying the R:C ratio from 60:40 to 50:50. An interaction effect between protein source and R:C ratio on intake was not observed (P > 0.05). The CSYW-diet did not affect the intake of concentrate and rice straw. However, when the R:C ratio was changed to 50:50, there was a significant increase in the apparent digestibility of neutral detergent fiber and acid detergent fiber (P < 0.05). There was no evidence of an interaction effect between CSYW and the R:C ratio on the parameters of the rumen, the microorganisms in the rumen, or blood urea-nitrogen. The concentration of ammonia-nitrogen in the rumen, however, significantly increased (P < 0.05) when animals were given a concentrated diet containing CSYW. Total VFA, C2:C3 ratios, acetic acid (C2), propionic acid (C3), butyric acid (C4), and methane levels were unaffected by the replacement of SBM with CSYW in concentrate diets or the R:C ratio given to lactating cows (P > 0.05). There was no evidence of an interaction between CSYW and the R:C ratio across any and all milk-related parameters (P > 0.05). The R:C ratio had no effect on milk production or composition (P > 0.05). With the exception of milk protein (P < 0.05), milk yield and milk composition were not affected by replacing SBM with CSYW in concentrate diets (P > 0.05). The concentration of protein in milk produced by animals fed a CSYW-diet increased from 3.05 to 3.25%. On the basis of this research, it is recommended that CSYW be used as a protein source in a concentrate diet in place of SBM with a R:C ratio of 60:40 or 50:50.

14.
Animals (Basel) ; 13(5)2023 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-36899790

RESUMO

The purpose of this experiment was to examine the effects of MFL supplementation on feed intake, nutrient digestibility, milk yield, and milk composition in early lactating dairy cows. Twelve, Thai crossbred Holstein Friesian cows in early lactation, 500 ± 30 kg of body weight (BW), were randomly assigned according to a completely randomized design (CRD). MFL supplementation levels of 0, 100, 200, and 300 mL/d were used as treatments. Experimental animals were fed a total mixed ration (TMR) with a roughage to concentrate ratio (R:C ratio) of 40:60, which contains 12% crude protein (CP) and 70% total digestible nutrient (TDN). Rice straw was a roughage source. MFL supplementation levels had no effect (p > 0.05) on body weight change and dry matter intake (DMI) expressed as %BW, whereas DMI expressed as metabolic body weight (BW0.75) was linearly (p < 0.05) increased, with the highest at 200 mL/d in the YFL supplementation group (147.5 g/kg BW0.75), whereas feed intake of organic matter (OM), CP, ether extract (EE), neutral detergent fiber (NDF) and acid detergent fiber (ADF) did not significant (p > 0.05) difference among treatments. Related to apparent digestibility, MFL levels did not affect (p > 0.05) on DM, OM, and EE digestibility, while apparent digestibility of CP, NDF, and ADF were linearly increased (p < 0.05) when increasing MFL supplementation levels, and the highest (p < 0.05) were the 200 and 300 mL/d FML supplemented groups. BUN at 0 h post feeding did not show a significant difference (p > 0.05) between treatments, while at 4 h after feeding, BUN was linearly (p < 0.05) increased from 0, 100, 200, and 300 (mL/day) MFL supplementation, the values were 12.9, 13.1, 19.7, and 18.4 mg/dL, respectively and the highest was 200 mL/head/day for the MFL supplemented group. MFL supplementation did not affect (p > 0.05) milk fat, lactose, solid not fat (SNF), and specific gravity of milk, while MFL supplementation at 200 mL/day caused a linear increase (p < 0.01) in BUN, MUN, milk yield, milk protein, total solids (TS) and 3.5% FCM when supplement levels were increased. In conclusion, MFL supplementation in early lactating dairy cows could improve feed intake, nutrient digestibility, milk yield, and milk composition.

15.
Animals (Basel) ; 13(4)2023 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-36830338

RESUMO

The goal of this study was to improve the nutritional value of cassava peel by using yeast (Saccharomyces cerevisiae) or effective microorganisms (EM), then use it as a replacement for concentrate, and examine the effects on the feed intake, feed digestibility, rumen fermentation, and growth performance of goats. The experimental design was a randomized complete block design (RCBD), and the dietary treatments were (1) concentrate, (2) replacement of the concentrate by yeast-fermented cassava peel (YFCP) at 50% and (3) replacement of the concentrate by EM-fermented cassava peel (EMFCP) at 50%. Twelve goats were given concentrate based on their treatments at a rate of 1.5% of their body weight. Rice straw was used as roughage and fed freely. It was found that the crude protein (CP) content of the cassava peel from 2.1% to 13.7-13.8% after 14 days of fermentation. Moreover, there were no significant differences between the treatments in terms of the feed intake, feed digestibility, ruminal pH, blood urea nitrogen concentration, volatile fatty acid profile, overall average daily gain, and feed efficiency. However, the cost of the feed per gain decreased when the YFCP or EMFCP was used instead of the concentrate. Based on the results of this experiment, it was possible to conclude that yeast or EM might be utilized as microorganisms to increase the nutritional value of cassava peel. Moreover, YFCP or EMFCP can replace concentrate by up to 50% without an impact on the feed intake, feed digestibility, rumen fermentation characteristics, and the growth performance; whereas, it can reduce the feed cost per gain up to 32%.

16.
Animals (Basel) ; 13(4)2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36830462

RESUMO

The purpose of the current study is to determine the effects of the replacement of cassava chips with winged bean (Psophocarpus tetragonolobus) tubers (WBTs) on gas production parameters, in vitro degradability, and ruminal fermentation in ruminant diets. The study was performed using a 3 × 4 factorial arrangements and was designed using a completely random method. Factor A employed three various roughage sources that were frequently used by locals to feed ruminants: Oryza sativa L. (a1), Brachiaria ruziziensis (a2), and Pennisetum purpureum (a3). The levels of WBTs substitutions for cassava chips at 0%, 33%, 66%, and 100% in the diet were selected as factor B. The experiment's findings revealed that replacing the cassava chips in the diet with WBTs at levels of 66 and 100% enhanced the fermentation process by producing a high gas volume at 96 h when Ruzi grass (RZ) was used as the main source of roughage (p < 0.01). The interaction between the roughage source and WBTs showed that organic matter (OM) degradability improved markedly in the case of RZ grass in combination with WBTs at all levels. Both the total volatile fatty acids (TVFAs) at 8 h of incubation and the average value decreased when a complete substitution of casava chips with WBT (WBT 100%) was employed or when employing rice straw as the main source of roughage (p < 0.01). There was no interaction between WBTs and roughage source on the ammonia-nitrogen (NH3-N) concentration (ml/dL) and rumen microbial count (p > 0.05). In summary, WBTs can be used effectively when combined with grass (Ruzi and Napier). The implementation of WBTs as a novel alternative feed may effectively replace cassava chips without affecting rumen function.

17.
Animals (Basel) ; 13(4)2023 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-36830520

RESUMO

This experiment was conducted to determine the influence of Kasedbok (Neptunia javanica Miq.) on the feed utilization, rumen fermentation, and microbial population in Thai Native beef cattle. Four animals with a mean body weight of 295 ± 15 kg were randomly arranged in a 4 × 4 Latin square design. There were four treatments, utilizing 0, 80, 160, and 240 g/kg Kasedbok in concentrate. Local feed resources, including cassava chips, rice bran, palm kernel meal, and soybean meal, were utilized to formulate the concentrate diets, which contained between 11.8 and 12.0% crude protein (CP). The trial was conducted for four periods of three weeks each. The first two weeks consisted of an adaptation period, while the final week was a sampling period. The findings of the current study reveal that feed intake, dry matter (DM), organic matter (OM), neutral detergent fiber (NDF), and acid detergent fiber (ADF) digestibility were similar between treatments. In addition, there was no effect of Kasedbok levels on rumen pH, blood urea nitrogen (BUN) concentration, or volatile fatty acid. However, increasing the inclusion level of Kasedbok linearly decreased CP digestibility and ammonia nitrogen (NH3-N) concentration (p = 0.04). In contrast, the population of fungal zoospores improved significantly (p = 0.03), while the bacterial and protozoal counts remained unchanged (p > 0.05). Furthermore, when the level of Kasedbok was increased from 0 to 80, 160, and 240 g/kg DM, the cost of concentrate decreased by 4.1, 7.8, and 10.6 USD/100 kg DM, respectively. The results of this experiment suggest that utilizing 240 g/kg of Kasedbok in a concentrated mixture will not affect feed utilization, rumen fermentation, improve microbial population, and reduce feed cost in Thai native beef cattle.

18.
J Anim Physiol Anim Nutr (Berl) ; 107(2): 435-443, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35686542

RESUMO

This study aimed to study the effect of excessive elemental sulfur addition on intake, digestibility, rumen characteristics, blood metabolites and nitrogen balance in Thai native beef cattle fed diets containing high fresh cassava root (FCR) supplementation. Four Thai native beef cattle with an initial body weight (BW) of 100 ± 10.0 kg were used and randomly assigned to a 2 × 2 factorial in a 4 × 4 Latin square design. Two levels of FCR supplementation at 15 (FCR-1.5) and 20 g/kg of BW (FCR-2) and two levels of sulfur supplementation in concentrate at 10 (Sulfur-1) and 20 g/kg dry matter concentrate (Sulfur-2) were evaluated. This study showed that sulfur and FCR in combination (p < 0.05) increased dry matter and organic matter digestibility and bacterial population. Sulfur-2 resulted in higher (p < 0.05) sulfur intake and serum thiocyanate concentration than Sulfur-1. FCR-2 had a greater (p < 0.05) FCR intake, total volatile fatty acids and propionate concentration than FCR-1.5. In conclusion, excessive elemental sulfur addition with high FCR supplementation showed no negative effect in Thai native beef cattle.


Assuntos
Suplementos Nutricionais , Manihot , Animais , Bovinos , Ração Animal/análise , Dieta/veterinária , Digestão , Ingestão de Alimentos , Fermentação , Nitrogênio/metabolismo , Rúmen/metabolismo , Enxofre/metabolismo , Enxofre/farmacologia
19.
Sci Rep ; 12(1): 21630, 2022 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-36517532

RESUMO

The purpose of the present investigation was to detect the effect of replacement of soybean meal (SBM) with citric waste fermented yeast waste (CWYW) as an alternative protein source of portentous substances in a concentrate mixture diet of beef cattle on intake, digestibility, ruminal fermentation, plasma urea-nitrogen, energy partitioning, and nitrogen balance. Four Thai-native beef bulls (170 ± 10.0 kg of initial body weight) were randomly allocated to a 4 × 4 Latin square design. The dietary treatments were four levels of CWYW replacing SBM in a concentrated diet at ratios of 0, 33, 67, and 100%. SBM was added to the concentrate diet at a dose of 150 g/kg DM. All cattle were offered ad libitum rice straw and the concentrate diet at 5 g/kg of body weight. The study was composed of four periods, each lasting for 21 days. The findings demonstrated that there was no difference in total dry matter intake, nutritional intake, or digestibility between treatments (p > 0.05). When CWYW replaced SBM at 100% after 4 h of feeding, ruminal pH, ammonia nitrogen, plasma urea nitrogen, and bacterial population were highest (p < 0.05). Volatile fatty acids and energy partitioning were not different (p > 0.05) among dietary treatments. Urinary nitrogen excretion was greatest (p < 0.05) for cattle fed CWYW to replace SBM at 100% of the concentrate. However, nitrogen absorption and retention for Thai-native cattle were similar (p > 0.05) among treatments. In conclusion, CWYW may be utilized as a substitute for SBM as a source of protein in Thai-native beef cattle without having an adverse impact on feed utilization, rumen fermentation characteristics, or blood metabolites.


Assuntos
Digestão , Rúmen , Animais , Bovinos , Masculino , Ração Animal/análise , Peso Corporal , Dieta/veterinária , Suplementos Nutricionais , Fermentação , Farinha , Nitrogênio/metabolismo , Rúmen/microbiologia , Glycine max/metabolismo , Ureia/metabolismo
20.
Animals (Basel) ; 12(21)2022 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-36359173

RESUMO

Once improperly managed, the citric acid production industry generates waste, which contributes to pollution and other environmental issues. We proposed that, with sufficient quality improvement, citric acid by-product (CAP) might be used for animal feed, thereby reducing the environmental impact. The aim of the present study was to ferment citric acid by-product (CAP) by inoculation with lactic acid bacteria (LAB) and a fibrolytic enzyme mixture for quality improvement and crude fiber reduction in the waste products. LAB inoculants were L. casei TH14, and the additive enzyme used was a fibrolytic enzyme mixture (glucanase, pectinase, and carboxymethylcellulase) of a small-scale fermentation method. The seven treatments employed in this study were as follows: (1) control (untreated), (2) CAP-inoculated L. casei TH14 at 0.01% DM, (3) CAP-inoculated L. casei TH14 at 0.05% DM, (4) CAP-inoculated enzymes at 0.01% DM, (5) CAP-inoculated enzymes at 0.05% DM, (6) CAP-inoculated L. casei TH14 at 0.01% DM with enzymes at 0.01% DM, and (7) CAP-inoculated L. casei TH14 at 0.05% DM with enzymes at 0.05% DM. The samples were taken on days 1, 7, 14, 21, and 28 of ensiling, both before and after. Four replications were used. The results of the chemical composition of the CAP before and after ensilage inoculated with L. casei TH14 did not show any differences in crude protein, ether extract, ash, or gross energy, but the enzymes significantly (p < 0.05) decreased crude fiber and increased nitrogen-free extract. The combination was especially effective at improving the characteristics of CAP, with a reduction in crude fiber from 21.98% to 22.69%, of neutral detergent fiber (NDF) from 16.01% to 17.54%, and of acid detergent fiber (ADF) from 13.75% to 16.19%. Furthermore, the combination of L. casei TH14 and the enzyme increased crude protein from 1.75% to 2.24% at 28 days of ensiling. Therefore, CAP-inoculated L. casei TH14 did not change in chemical composition, while crude fiber, NDF, and ADF decreased when CAP was inoculated with enzyme. The combination of L. casei TH14 and the enzyme is more effective at improving chemical composition and reducing crude fiber and enhancing carbohydrate breakdown in the CAP. Finally, by enhancing the CAP's quality, it may be possible to use it in animal feed and minimize its impact on the environment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA